

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 2013–2015

First stereoselective total synthesis of $(6R)$ -6- $[(4R, 6R)$ -4,6-dihydroxy-10-phenyldec-1-enyl]-5,6-dihydro-2H-pyran-2-one $\overline{\mathscr{A}}$

Palakodety Radha Krishna* and Ravula Srinivas

D-206/B, Discovery Laboratory, Organic Chemistry Division-III, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 1 December 2006; revised 4 January 2007; accepted 10 January 2007 Available online 14 January 2007

Abstract—A stereoselective total synthesis of $(6R)$ -6- $[(4R, 6R)$ -4,6-dihydroxy-10-phenyldec-1-enyl]-5,6-dihydro-2H-pyran-2-one is reported. The strategy utilizes an iterative Jacobsen hydrolytic kinetic resolution, ring opening with a chiral propargylic synthon and a preferential (Z) -Wittig olefination reaction and lactonization as the key steps. $© 2007 Elsevier Ltd. All rights reserved.$

The α -pyrone moiety is one of the most commonly encountered structural motifs among natural product skeletons, many of which exhibit varied pharmacologi-cal properties.^{[1](#page-2-0)} The α -pyrone (6-substituted 5,6-dihydro-2H-pyran-2-one or α , β -unsaturated- δ -lactone) containing natural products are most often connected through a polyoxygenated chain to a lactone moiety. The various biological activities shown by these compounds include antimicrobial, antifungal and cytotoxicity against human tumour cells.^{[2](#page-2-0)} (6R)-6- $[(4R, 6R)$ -4,6-Dihydroxy-10-phenyldec-1-enyl]-5,6-dihydro- $2H$ -pyran-2-one $1³$ $1³$ $1³$ is one such natural product which was isolated from Ravensara crassifolia along with a structurally similar compound the synthesis of which was reported earlier.^{[4](#page-2-0)} As a part of our interest in the synthesis of lactone skeleton-containing bioactive natural products, 5 herein we report the first stereoselective total synthesis of 1 through a ring-opening reaction of chiral epoxide 4, obtained by an iterative Jacobsen's kinetic resolution protocol with the known^{[6](#page-2-0)} chiral propargyl alcohol 5 and elaboration of the ensuing triol 3 to the target compound.

The retrosynthetic analysis, envisions that 1 could be obtained from 2 by functional group transformations, elaboration and lactonization while 2 in turn could be visualized from 3 itself formed by the ring-opening reaction of chiral epoxide 4 with chiral propargylic alcohol 5. Compound 4, in turn, could be conveniently derived from 6 by an iterative Jacobsen's hydrolytic kinetic resolution (HKR)-epoxide ring-opening reaction protocol of its olefin derivative obtained from 6 to garner the requisite 1,3-anti-polyol system.

The synthesis of 1 ([Scheme 1\)](#page-1-0), began from commercially available 5-phenylpentan-1-ol 6 which on oxidation under Swern reaction conditions gave the corresponding aldehyde (92% yield), which on Wittig olefination $(CH_3P^+Ph_3Br^-/n-BuLi/THF/0 °C)$ afforded the terminal olefinic compound (55%). This olefin on exposure to m-CPBA gave racemic epoxide 7 (95%). Compound 7 was subjected to Jacobsen's hydrolytic kinetic resolution⁷ with 0.55 equiv of water using (R,R) with 0.55 equiv of water using (R, R) -(salen) $Co^{III}(OAc)$ A as the catalyst to provide enantiomerically pure 8 and diol 8a each in 42% yield. Diol 8a was recycled to 8 by a three-step sequence. Thus, 8a was mono-benzoylated $(BzCl/Et_3N/CH_2Cl_2/rt)$ followed by tosylation of the secondary hydroxyl (TsCl/ $Et_3N/CH_2Cl_2/DMAP/rt$ to give the diprotected compound. Base induced deprotection of the benzoate generated an alkoxide, which prompted simultaneous elimination of the tosylate and ring closure by an S_N2 mode to afford the desired epoxide 8^8 8^8 [α] $_{\text{D}}^{25}$ +11.17

Keywords: a-Pyrone; Jacobsen hydrolytic kinetic resolution; 1,3-anti-Polyol; (Z)-Wittig olefination reaction; Lactonization. $*$ IICT Communication No. 061129.

^{*} Corresponding author. Tel.: +91 40 27160123x2651; fax: +91 40 27160387; e-mail: prkgenius@iict.res.in

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.01.056

Scheme 1. Reagents and conditions: (a) (i) (COCl)₂, DMSO, Et₃N, -78 °C, 92%, (ii) CH₃+PPh₃Br⁻, *n*-BuLi, 0 °C, 55%, (iii) *m*-CPBA, CH₂Cl₂, rt, 95%; (b) (R, R) -(salen)Co^{III}(OAc) A, 0.55 equiv H₂O, 42%; (c) (i) PhCOCl, Et₃N, CH₂Cl₂, rt, (ii) TsCl, Et₃N, DMAP (cat), CH₂Cl₂, rt, (iii) K₂CO₃, MeOH, rt; (d) vinylmagnesium bromide, CuI, THF, rt, 71%; (e) (i) TBSCl, imidazole, CH₂Cl₂, rt, 92%, (ii) m-CPBA, CH₂Cl₂, rt, 96%; (f) (S,S)-(salen) $Co^{III}(OAc)$ **B**, 0.55 equiv H₂O, 41%.

 $(c 1.00, CHCl₃)$ in 63% yield over the three steps (ee 88%). Ring-opening of epoxide 8 with vinylmagnesium bromide gave homoallylic alcohol 9 (71%) which was then protected as TBS ether 9a (92%) with TBSCl in CH_2Cl_2 at room temperature. The stereochemical assignment and the chiral homogeneity of 9a were ascertained by comparing the spectral data of the independently accessed compound through the Sharpless strategy.^{[9](#page-2-0)} Subsequently, epoxidation of 9a with m-CPBA in CH_2Cl_2 furnished diastereomeric epoxide 10 (96%). Epoxide 10 on Jacobsen's hydrolytic kinetic resolution (HKR) with 0.55 equiv of water using (S, S) -(salen)- $Co^{III}(OAc)$ **B** as the catalyst provided enantiomerically pure 4 and diol 4a each in 41% yield. Diol 4a was recycled to 4 under similar conditions to those previously described. The optical purity (de 97%) of the obtained epoxide was evaluated by comparing the spectral data of an earlier sample.

Next, nucleophilic ring-opening of epoxide 4 (Scheme 2) with the acetylenic anion generated from the known^{[6](#page-2-0)} chiral propargylic alcohol 5 gave the corresponding diol

(72%) which on desilylation with TBAF in THF at room temperature gave triol 3 (87%). Triol 3 was converted to its acetonide derivative $(95%)$ using $2,2'$ -DMP in $CH₂Cl₂$ catalyzed by PTSA and selective reduction of the propargylic alcohol with LAH in THF generated allylic alcohol 11 (85%). The stereochemical assignment of the newly created stereogenic hydroxyl groups was made based on Rychnovsky's analogy^{[10](#page-2-0)} wherein the 13° C NMR spectra of 11 exhibited both the acetonide methyl carbons at δ 24.8 and 24.7 and the quaternary carbon at δ 100.3, characteristic of the acetonide of an anti-1,3-diol moiety. Later, the allylic hydroxyl group was protected as its TBS ether (98%) with TBSCl in $CH₂Cl₂$ at room temperature. Removal of the PMB group (DDQ/CH₂Cl₂–H₂O/rt) followed by oxidation of the hydroxyl group using IBX in DMSO at room temperature gave the aldehyde, which was then chain-elongated via a Wittig reaction to afford the corresponding α , β -unsaturated ester 2 { $(F_3CCH_2O)_2POCH_2$ -COOMe, KHMDS, 18-crown-6, THF, -78 °C, 76% over two steps} predominantly as the (Z) -isomer,¹¹ as characterized by ${}^{11}H$ and ${}^{13}C$ NMR spectroscopy. For

Scheme 2. Reagents and conditions: (a) (i) 5 , n -BuLi, BF_3OE_2 , THF, -78 °C, 72% , (ii) TBAF, THF, rt, 87% ; (b) (i) 2,2'-DMP, CH₂Cl₂, PTSA (cat), rt, 95%, (ii) LAH, THF, rt, 85%; (c) (i) TBSCl, imidazole, CH2Cl2, rt, 98%, (ii) DDQ, CH2Cl2:H2O, rt, 79%; (d) (i) IBX, DMSO, rt, (ii) $(F_3CCH_2O)_2POCH_2COOMe$, KHMDS, 18-crown-6, THF, 76% (over two steps); (e) PTSA, C_6H_6 , rt, 65%.

example, the coupling constant $(J = 11.3 \text{ Hz})$ of the olefinic protons confirmed the (Z) -geometry of the olefin. Finally, acid-catalyzed (PTSA) desilylation followed by concomitant lactone cyclization yielded target compound 1 (65%). Mp 66–68 °C; $\left[\alpha\right]_D^{25}$ +51.70 (c 0.25, CHCl₃); {lit.³ mp 74 °C; $[\alpha]_D^{25}$ +59.00 (c 2.00, CHCl₃)}. The physical and spectroscopic data of 1 were identical to the reported values of the natural product.

In conclusion, the first stereoselective synthesis of 1 has been accomplished by a convergent strategy wherein one of the advanced intermediates was accessed by iterative Jacobsen's hydrolytic kinetic resolutions with two enantiomeric salens for installing the 1,3-anti-polyol system.¹² The synthesis reported herein establishes the absolute stereochemistry of the isolated natural product.

Acknowledgement

One of the authors (R.S.) thanks the UGC, New Delhi, for financial support in the form of a fellowship.

References and notes

- 1. Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94–110.
- 2. (a) Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-García-Rojas, C. M. Tetrahedron 2001, 57, 47-53; (b) Carda, M.; Rodríguez, S.; Segovia, B.; Marco, J. A. J. Org. Chem. 2002, 67, 6560-6563; (c) Carda, M.; González, F.; Castillo, E.; Rodríguez, S.; Marco, J. A. Eur. J. Org. Chem. 2002, 2649–2655; (d) Murga, J.; Falomir, E.; García-Fortanet, J.; Carda, M.; Marco, J. A. Org. Lett. 2002, 4, 3447-3449; (e) Carda, M.; Rodríguez, S.; Castillo, E.; Bellido, A. A.; Díaz-Oltra, S.; Marco, J. A. Tetrahedron 2003, 59, 857–864.
- 3. Raoelison, G. E.; Terreaux, C.; Queiroz, E. F.; Zsila, F.; Simonyi, M.; Antus, S.; Randriantsova, A.; Hostettmann, K. Helv. Chim. Acta 2001, 84, 3470–3476.
- 4. Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S.; Srinivasa Reddy, M. Tetrahedron Lett. 2004, 45, 9299–9301.
- 5. (a) Radha Krishna, P.; Narasimha Reddy, P. V. Tetrahedron Lett. 2006, 47, 7473–7476; (b) Radha Krishna, P.; Narasimha Reddy, P. V. Tetrahedron Lett. 2006, 47, 4627– 4630; (c) Radha Krishna, P.; Ramana Reddy, V. V. Tetrahedron Lett. 2005, 46, 3905–3907; (d) Radha Krishna, P.; Ramana Reddy, V. V.; Sharma, G. V. M. Synthesis 2004, 2107–2114; (e) Radha Krishna, P.; Narsingam, M.; Kannan, V. Tetrahedron Lett. 2004, 45, 4773– 4775.
- 6. Ramana, C. V.; Raghupathi, N.; Gurjar, M. K.; Chorghade, M. S. Tetrahedron Lett. 2005, 46, 4073–4075.
- 7. (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936–938; (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307–1315.
- 8. Compound **8** spectral data: $[\alpha]_D^{25}$ +12.70 (c 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.26–7.10 (m, 5H, Ar-H), 2.86–2.80 (m, 1H, H-2), 2.68 (dd, $J = 5.28$, 9.06 Hz, 1H, H-1), 2.61 (t, $J = 6.79$ Hz, 2H, Ar-CH₂), 2.39 (dd, $J = 2.26, 5.28$ Hz, 1H, H-1), 1.73–1.63 (m, 2H, CH₂), 1.59–1.45 (m, 4H, $2 \times CH_2$).
- 9. Compound 9a was independently synthesized as follows:

- 10. Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945–948.
- 11. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405– 4408.
- 12. Spectral data of selected compounds. Compound 9a: light yellow liquid; $[\alpha]_D^{25} + 53.80$ (c 0.35, CHCl₃); ¹H NMR $(200 \text{ MHz}, \text{CDC1}_3)$: δ 7.26–7.10 (m, 5H, Ar-H), 5.89–5.68 $(m, 1H, -CH=CH₂), 5.14-5.04 (m, 2H, CH₂=CH₋), 3.65-$ 3.54 (m, 1H, $-CH-OH$), 2.61 (dd, $J = 6.9$, 14.7 Hz, 2H, Ph– CH_2 –), 2.32–2.02 (m, 2H, – CH_2 –CH=CH₂), 1.72–1.57 $(m, 2H, -CH₂), 1.53–1.40$ $(m, 4H, 2 \times -CH₂), 13C$ NMR (100 MHz, CDCl3): 142.4, 134.7, 128.2, 125.5, 117.9, 70.4, 41.8, 36.5, 35.8, 31.3, 25.2; IR (neat): 3449, 2912, 2857, 1223 cm⁻¹; LCMS; 227 (M+Na)⁺. Anal. Calcd for $C_{14}H_{20}O$: C, 82.30; H, 9.87. Found: C, 82.32; H, 9.83. Compound 11: Colorless liquid; $[\alpha]_D^{25} - 62.25$ (c 0.60, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.25–7.19 (m, 5H, Ar-H), 7.14–7.09 (m, 2H, Ar-H), 6.79 (d, $J = 8.8$ Hz, 2H, Ar-H), $5.67-5.42$ (m, 2H, $-CH=CH-$), 4.41 (s, 2H, Ar-CH₂–O–), 4.22 (q, $J = 6.43$, 12.07 Hz, 1H, –CH–OH), 3.78 (s, 3H, $-OCH_3$), 3.76–3.51 (m, 4H, 2×–CH–OH, $-CH_2$ -OPMB), 2.58 (t, $J = 7.24$, 15.29 Hz, 2H, Ph–CH₂–), 2.30 (m, 2H, $-CH_2$ –CH=CH–), 1.74 (m, 2H, $-CH_2$ –), 1.64–1.33 (m, 8H, 4×–CH₂–), 1.28 (2s, 6H, 2×–CH₃); ¹³C NMR (75 MHz, CDCl₃): 159.1, 142.9, 134.8, 130.1, 129.2, 128.2, 128.1, 126.6, 125.5, 113.7, 100.0, 72.8, 71.4, 67.9, 66.4, 66.2, 55.1, 38.4, 38.0, 36.6, 35.7, 35.6, 31.3, 24.9, 24.8, 24.7; IR (neat): 3447, 2933, 2858, 1611, 1246 cm⁻¹; LCMS; 505 $(M + Na)^+$. Anal. Calcd for C₃₀H₄₂O₅: C, 74.65; H, 8.77. Found: C, 74.61; H, 8.72. Compound 2: Thick syrup; $[\alpha]_D^{25} - 29.20$ (c 0.30, CHCl₃); ¹H NMR (300 MHz, CDCl3): d 7.26–7.09 (m, 5H, Ar-H), 6.32–6.24 (m, 1H, $-CH=CH-COOMe$), 5.81 (d, $J = 11.3$ Hz, 1H, $-CH=CH=COOMe$), 5.61–5.41 (m, 2H, CH=CH), 4.20 (q, $J = 5.28$ Hz, 1H, $-CH-OTBS$), 3.80–3.6 (m, 2H, 2 \times $-CH-OH$), 3.68 (s, 3H, $-OCH_3$), 2.82 (t, $J = 6.40$, 12.84 Hz, 2H, $-HOCH_2-CH_2-CH=CH)$, 2.59 (t, $J =$ 7.55, 15.86 Hz, 2H, Ph–CH2), 2.24–2.09 (m, 2H, –CH₂–), 1.66–1.36 (m, 6H, $3 \times$ –CH₂–), 1.28 (s, 6H, 2 \times –CH₃), 0.87 (s, 9H, tBu), 0.02 (s, 6H, $2 \times CH_3$ –Si); ¹³C NMR (75 MHz, CDCl₃): δ 166.9, 146.5, 135.3, 128.2, 128.1, 126.4, 125.7, 120.2, 100.3, 72.3, 68.8, 66.4, 66.3, 50.9, 38,5, 38.1, 37.5, 35.8, 35.6, 31.3, 25.8, 25.0, 24.7, 18.1, $-4.3, -4.8$; IR (neat): 2929, 2856, 1724, 1643, 1220 cm⁻¹; LCMS; 553 $(M + Na)^+$. Anal. Calcd for C₃₁H₅₀O₅Si: C, 70.14; H, 9.49. Found: C, 70.10; H, 9.51. Compound 1: White solid, mp: 66–68 °C; $[\alpha]_D^{25}$ +51.70 (c 0.25, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.27–7.10 (m, 5H, Ar-H), 6.88–6.80 (m, 1H, $-CH=CH-CO$), 6.01 (d, $J = 9.8$ Hz, 1H, $-CH=CH-CO$), 5.85 (ddd, $J = 7.5, 7.5, 14.4$ Hz, 1H, $-CH=CH-$), 5.64 (dd, $J = 6.5$, 15.1 Hz, 1H, $-CH=CH-$), 4.86 (q, $J = 7.5$, 14.4 Hz, 1H, $-CH$ –O–), 4.05–3.95 (m, 1H, $-CH-OH$), 3.94–3.85 (m, 1H, $-CH-OH$), 2.59 (t, $J = 7.5$, 15.1 Hz, 2H, $-CH_2$ -Ph), 2.45–2.38 (m, 2H, $-CH_2$), 2.29– 2.27 (m, 2H, –CH₂–), 1.68–1.58 (m, 2H, –CH₂–), 1.54–1.39 (m, 6H, 3 × CH₂); ¹³C NMR (75 MHz, CDCl₃): δ 164.1, 144.7, 142.4, 131.4, 129.7, 128.3, 128.2, 125.6, 121.4, 77.8, 69.2, 68.2, 42.0, 40.3, 37.3, 35.8, 31.3, 29.7, 25.4; IR (neat): 3414, 2924, 2854, 1708, 1248 cm⁻¹; LCMS; 367 (M+Na)⁺. Anal. Calcd for $C_{21}H_{28}O_4$: C, 73.23; H, 8.19. Found: C, 73.30; H, 8.17.